Everyone’s favorite 60-sided balls have been found
in the interstellar space between stars. While the finding may not be
Nobel Prize-worthy like the discovery of the original 60-atom molecules
also known as Buckminsterfullerene, it’s significant in helping to
identify what’s in the mysterious medium between stars and what else it
might hold. Does this mean extraterrestrials play soccer (OK, football)?
“Combined with prior, ground-based observations … our
Hubble Space Telescope spectra place the detection of interstellar
[buckminsterfullerene] beyond reasonable doubt.”
It wasn’t as easy as it sounds in that simple explanation from the article announcing the discovery in The Astrophysical Journal Letters.
Physicist Martin Cordiner of NASA’s Goddard Space Flight Center led the
research, which began with using the Hubble Telescope’s Space Telescope
Imaging Spectrograph (STIS) to examine the interstellar medium (ISM)
between them. ISM is made of diverse absorption bands of extremely
diffuse and relatively unknown matter (also called diffuse interstellar
bands or DIB) that are visible in spectra ranging from visible light to
near infra-red. Scientists have previously been able to determine
they’re not made of stellar matter but they’ve only been able to detect
molecule composed of three atoms. However, a two-year observation (2016
to 2018) of the ionization of light as it passed through the ISM led to
an unexpected HUGE discovery.
A buckyball or Buckminsterfullerene is a fullerene (a form or carbon)
composed of 60 carbon atoms in a round structure made of twenty
hexagons and twelve pentagons (causing it to resemble a soccer ball)
with a carbon atom at each vertex of each polygon. That shape also
resembles a geodesic dome, which is why its discovers in 1985 named it
after architect and futurist Buckminster Fuller, who popularized it in
many of his architectural designs. In case you missed it, a buckyball is
composed of 60 atoms – that’s 57 more than the biggest atoms found in
interstellar matter to date.
“Currently, the leading theory is that they form as a
result of carbon chemistry in the warm envelopes of dying stars, such as
Red giants.”
When asked by Forbes
how the buckyballs got there, Cordiner waxed poetic about the “warm
envelopes of dying stars” – the residue left after a Red giant star
exhausts its supply of hydrogen and carbon atoms are pushed to its
surface in a process called a dredge-up, allowing them to appear in its
spectrum. It seems natural rather than accidental that at least some of
these carbon molecules would be the complex Buckminsterfullerenes – and
now there’s proof.
“The confirmation of interstellar [buckminsterfullerene]
represents a breakthrough in our understanding of chemical complexity in
the diffuse interstellar medium [..] bringing a new understanding of
the types of molecules that may be responsible for the remaining
(unidentified) diffuse interstellar bands.”
What does all of this mean? For now, it confirms that what looks like
a void between stars is actually teeming with large molecules in
diffuse interstellar bands. While not as entertaining as diffuse heavy
metal bands, finding buckyballs in-between stars is still a big deal.
No comments:
Post a Comment